CHROM. 18 525

INCREMENTS OF THE ARITHMETIC RETENTION INDEX FOR NON-ION-IC SURFACTANTS WITH A POLYOXYETHYLENE CHAIN

JAN SZYMANOWSKI* and ADAM VOELKEL

Technical University of Poznari, Institute of Chemical Technology and Engineering, PI. Sklodowskiej-Curie, Poznari (Poland)

and

HENRYK SZEWCZYK

Blachownia Institute of Heavy Organic Chemicals, Kędzierzyn-Koźle (Poland) (Received January 20th. 1986)

SUMMARY

Arithmetic retention values were determined for successive homologues of the trimethylsilyl and acetyl derivatives of polyoxyethylene glycols, polyoxyethylene glyco1 monoalkyl ethers, N-polyoxyethylene alkylamines and polyoxyethylene glycol monoalkylphenyl ethers. The increments of the arithmetic retention index were calculated for the characteristic groups present in the surfactants' molecules. They can be used to estimate the arithmetic retention indices with absolute errors of 20 (0.7- 0.8%) for polyoxyethylene glycols, polyoxyethylene glycol monoalkyl ethers and N-polyoxyethylene alkylamines, and with an error of 35 (0.9%) for polyoxyethylene glycol monoalkylphenyl ethers.

INTRODUCTION

Non-ionic surfactants with a polyoxyethylene chain are usually complex mixtures with different lengths of the hydrophobic hydrocarbon chain and of the hydrophilic poiyoxyethylene block. This is connected with the nature of the hydrophobic reagents used for their syntheses, *i.e.* fatty acids, alcohols, alkylamines, alkylphenols, etc., and with the possibility of ethylene oxide reacting not only with the initial hydrophobic reagent but also with the intermediates formed during the first stages of ethoxylation. Besides these main surface-active components, commercial products also contain various amounts of undesired by-products, mainly polyoxyethylene glycols with different molecular masses.

Gas-liquid chromatography has often been used to separate successive components of non-ionic surfactants and to determine their contents'. It is possible to separate the successive components of polyoxyethylene glycols and of their derivatives with alcohols, alkylphenols and alkylamines up to homologues with more than ten but less than twenty oxyethylene units in their molecules. Some standard welldefined samples are necessary to identify successive peaks on chromatograms, or else

gas chromatography-mass spectrometry must be used to determine the molecular masses and the structures of the separated components²⁻⁴. However, this can be avoided because successive homologues differ by the number of oxyethylene groups and/or the number of methylene groups. Thus, a monotonic increase of the arithmetic retention index value is observed for homologues with a longer polyoxyethylene chain and/or a longer hydrocarbon chain. The values of the arithmetic retention index might be estimated from the values of the appropriate increments determined for the characteristic groups present in surfactant molecules; this estimation is the subject of our work.

EXPERIMENTAL

The same model polydisperse or individual surfactants were considered as those discussed in our previous reports^{$2-5$}. Their structures were as follows: $RO(CH_2CH_2O)_nH$, $RC_6H_4O(CH_2CH_2O)_nH$, $HO(CH_2CH_2O)_nH$, $R_2N(CH_2CH_2O)_nH$, $H(OCH_2CH_2)_m(R)N(CH_2CH_2O)_nH$ and \overline{RNH} ($\overline{CH_2CH_2O}$)_nH. They were analysed as trimethylsilyl derivatives and/or acetates. N,O-bis(trimethylsilyl)acetamide (Applied Science Labs, U.S.A.) and acetate chloride (Fluka, Switzerland) were used to obtain these derivatives according to standard methods. The silylation of alkylamines was described previously⁵.

A gas-liquid chromatograph Perkin-Elmer Model 900 with a flame ionization detector was used. The separation was carried out in stainless-steel columns $(0.6-1.8)$ $m \times 2.7$ mm I.D.). Chromosorb G AW DMCS (60–80 mesh) was used as the support and silicone resin OV-17 (3%) as the liquid phase. Helium was used as the carrier gas, at a flow-rate of 50 cm3/min. The temperatures of the injector and the detector were 370°C. The analyses were started with a column temperature of 130°C, which after 1 min was programmed for a rate of change of $4^{\circ}C/\text{min}$ up to 320 $^{\circ}C$, where it was held constant. The arithmetic retention index 6 was determined for all the separated components.

RESULTS AND DISCUSSION

The values of the arithmetic retention index (I_R) determined for the separated homologues of the considered surfactants are given in Tables I-V. The values of I_R for the first nine to twelve homologues were only determined because of the lack of standard alkanes with higher molecular masses, although the next homologues containing up to about sixteen to eighteen oxyethylene units were separated. The values of the arithmetic retention index obtained increase as the length of the polyoxyethylene chain increases. The acetates have somewhat higher I_R values than the equivalent trimethylsilyl derivatives.

The values of the arithmetic retention index obtained were used to calculate the *IR* increments for the characteristic groups present in surfactant molecules. The calculations were done separately for polyoxyethylene glycols and polyoxyethylene glycol monoalkyl ethers (Tables I-III), N-polyoxyethylene alkyl- and dialkylamines (Table IV) and polyoxyethylene glycol monoalkylphenyl ethers (Table V).

The chemical formula of the separated compounds (species) in the considered group of surfactants (chemical system) can be expressed as

$$
A_i = (G_1)_{a_{1i}} (G_2)_{a_{2i}} \dots (G_m)_{a_{mi}}
$$

Formula*	n	I_R^{exp}	I_R^{abc}	Error		
				Absolute	Relative $(%$	
SilO(EO)"Sil	2	1289	1265	24	1.9	
	$\overline{\mathbf{3}}$	1590	1570	20	1.3	
	4	1895	1875	20	1.1	
	5	2194	2180	14	0.6	
	6	2492	2485	7	0.3	
	7	2790	2790	$\bf{0}$	0.0	
	8	3092	3095	-3	-0.1	
	9	3392	3400	-8	-0.2	
	10	3686	3705	-19	-0.5	
	11	3978	4010	-32	-0.8	
	12	4251	4315	-64	-1.5	
AcO(EO) _n Ac	2	1519	1557	-38	-2.5	
	3	1817	1862	-45	-2.5	
	4	2129	2167	-38	-1.8	
	5	2438	2472	-34	-1.4	
	6	2736	2777	-41	-1.5	
	7	3061	3082	-21	-0.7	
	8	3371	3387	-16	-0.5	
	9	3677	3692	-15	-0.4	
	10	4000	3997	3	0.1	
	11	4304	4302	\overline{c}	0.0	
	12	4658	4607	51	1.1	
Average error				23	0.9	

TABLE I

* Sil = Si(CH₃)₃, Ac = OCCH₃, EO = CH₂CH₂O.

where $G_1, G_2, \ldots G_m$ are the characteristic groups present in the considered chemical system, a_{1i} , a_{2i} , ... a_{mi} are the numbers of groups G_1 , G_2 , ..., G_m in the compound A_i , $i = 1, 2, \ldots$ *n* are the numbers of the compounds considered in the system, and $j = 1, 2, \dots$ m are the numbers of the characteristic groups considered. It is the case that n is always greater than or equal to m ; in our systems n is much greater than m .

The set of subscripts ${a_{ii}}$, $j = 1, 2, ...$ m, forms the formula vector, a_i , of the species A_i

$$
\mathbf{a}_i = \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{bmatrix} = [a_{1i}, a_{2i}, \dots, a_{mi}]^T
$$

where $T =$ transposition.

The formula matrix *A* of the chemical system is then defined as:

TABLE II

ARITHMETIC RETENTION INDICES FOR POLYOXYETHYLENE GLYCOL MONOALKYL ETHERS

Formula	n	I_R^{exp}	I_R^{calc}	Error		
				Absolute	Relative (%)	
$C_{10}H_{21}O(EO)_{n}Si1$	$\bf{0}$	1383	1380	3	0.2	
	I	1733	1685	48	2.8	
	\overline{c}	2020	1990	30	1.5	
	3	2308	2295	13	0.6	
	4	2614	2600	14	0.5	
	5	2910	2905	5	0.2	
	6	3200	3210	-10	-0.3	
	7	3510	3515	-5	-0.1	
	8	3810	3820	-10	-0.3	
	9	4081	4125	-44	-1.1	
	10	4413	4430	-17	-0.4	
$C_{12}H_{25}O(EO)_{n}Si1$	0	1583	1580	3	0.2	
	1	1894	1885	9	0.5	
	\overline{c}	2200	2190	10	0.5	
	3	2498	2495	3	0.1	
	4	2802	2800	$\overline{2}$	0.1	
	5	3095	3105	-10	-0.3	
	6	3399	3410	-11	-0.3	
	7	3699	3715	-16	-0.4	
	8	3987	4020	-33	-0.8	
	9	4255	4325	-70	-1.6	
$C_{14}H_{29}O(EO)_{n}Si1$	0	1773	1780	-7	-0.4	
	1	2100	2085	15	0.7	
	$\overline{\mathbf{c}}$	2410	2390	20	0.8	
	3	2707	2695	12	0.4	
	4	3003	3000	3	0.1	
	5	3300	3305	-5	-0.2	
	6	3600	3610	-10	-0.3	
	7	3895	3915	-20	-0.5	
	8	4163	4220	-57	-1.4	
	9	4555	4525	30	0.7	
Average error				18	0.6	

 $A = (a_1, a_2, ..., a_n).$

Thus, if only three successive homologues of polyoxyethylene glycols in the form of trimethylsilyl and acetyl derivatives are considered:
 $O(CH_3CH_2O_3Si(CH_3)_3$, $CH_3J_3SiO(CH_2CH_2O)_3Si(CH_3)_3$, $\begin{array}{ccc} \text{(CH}_3)_3\text{SiO}(\text{CH}_2\text{CH}_2\text{O})_2\text{Si}(\text{CH}_3)_3, \\ \text{(CH}_3)_3\text{SiO}(\text{CH}_2\text{CH}_2\text{O})_2\text{Si}(\text{CH}_3)_3, \\ \text{(CH}_3)_4\text{SiO}(\text{CH}_2\text{CH}_2\text{O})_2\text{OC}(\text{H}_3), \end{array}$ $\begin{array}{ccc} \text{(CH}_3)_3\text{SiO}(\text{CH}_2\text{CH}_2\text{O})_3\text{Si}(\text{CH}_3)_3, \\ \text{(CH}_3\text$ $(CH₃)₃SiO(CH₂CH₂O)₄Si(CH₃)₃$ CH₃COO(CH₂CH₂O)₃OCCH₃ and CH₃COO(CH₂CH₂O)₄OCCH₃, and the following characteristic groupps, CH₂, O, (CH₃)₃SiO and CH₃COO, are chosen as the **components of the compounds considered, the formula matrix of the system is:**

TABLE III

ARITHMETIC RETENTION INDICES FOR POLYOXYETHYLENE GLYCOL MONOALKYL ETHERS

$$
A = \begin{bmatrix} 4 & 6 & 8 & 4 & 6 & 8 \\ 1 & 2 & 3 & 1 & 2 & 2 \\ 2 & 2 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 & 2 \end{bmatrix}
$$

In our case the number of homologues of the polyoxyethylene glycols and the polyoxyethylene glycol monoalkyl ethers was 82, and the number of characteristic groups was 4. In the case of N-polyoxyethylene alkylamines these numbers were 40 and 7, respectively; the following characteristic groups were considerred: 0, OH, $OSi(CH_3)_3$, N, NH and NSi $(CH_3)_3$. For polyoxyethylene glycol monoalkylphenyl

TABLE IV

ARITHMETIC RETENTION INDICES FOR N-POLYOXYETHYLENE ALKYL- AND DIALKYI AMINES

 \mathcal{A}

TABLE V

ARITHMETIC RETENTION INDICES FOR POLYOXYETHYLENE GLYCOL MONOALKYL-PHENYL ETHERS

ethers the numbers of the species in the system and of the considered groups CH_2 = CH₃, a branched alkyl, O, OSi(CH₃)₃, OOCH₃ and C₆H₄ were 28 and 6, respectively.

However, it was necessary to set the values of the increment of the arithmetic index for the methylene group and for the methyl group as being 100. Therefore standard alkanes were considered in the numbers equivalent to the numbers of the surfactants present in the system. In this case the formula vectors are very simple because the formula of the alkane can be expressed as: $A_i = (\text{CH}_2)_{a_{\text{CH}_2,i}}$ (the methyl

group is considered equivalent to the methylene group). Thus, the formula vector is; $a_i = [a_{CH_2,i}, O, ..., O]^T$. An exemplary formula matrix for a system containing hexane, heptane and octane is:

$$
\mathbf{A} = \begin{bmatrix} 6 & 7 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

The whole matrix of the system considers all the formula vectors determined both for the considered surfactants and for the standard alkanes: $A = [a_1, a_2, ..., a_n, a_{i+1},$ \ldots , a_{2n} , where a_1 , \ldots , a_n denote the formula vectors for the separated homologues of the considered surfactants, while a_{n1} , ..., a_{2n} denote the formula vectors for additionally considered standard alkanes.

Assuming the additivity of the arithmetic retention index in the chemical system, the arithmetic retention index of a compound A_i can be expressed as:

$$
I_{\mathbf{R},A_i} = \sum_{j=1}^{m} a_{ji} \cdot \Delta I_{\mathbf{R},\mathbf{G}_j}
$$

where it is assumed that the increment of I_R for a group G_j is constant for all compounds present in the considered system. Thus, when the set of the arithmetic retention index obtained for all compounds present in the system is taken into consideration, the following set of linear equations is obtained:

$$
I_{R,A_1} = \sum_{j=1}^{m} a_{j1} \cdot \Delta I_{R,G_j}
$$

$$
I_{R,A_2} = \sum_{j=1}^{m} a_{j2} \cdot \Delta I_{R,G_j}
$$

$$
\vdots
$$

$$
I_{R,A_n} = \sum_{j=1}^{m} a_{jn} \cdot \Delta I_{R,G_j}
$$

which can be presented as:

$$
I_{\rm R} = A \cdot \Delta I_{\rm R}
$$

where

$$
I_{R} = [I_{R,A_1}, I_{R,A_2}, \ldots, I_{R,A_n}]^{T}
$$

$$
\Delta I_{R} = [A I_{R,G_2}, \ldots, A I_{R,G_n}]^{T}
$$

The above set of linear equations was solved by the orthogonalization method of

Gram-Schmidt⁷. The values of the increments for the arithmetic retention index obtained for polyoxyethylene glycols and polyoxyethylene glycol monoalkyl ethers and for N-polyoxyethylene alkylamines are given in Table VI. The increments for polyoxyethylene glycol monoalkylphenyl ethers are also given in this table, but they were calculated in a somewhat different way that will be discussed later.

The increments obtained can be used to estimate the values of the arithmetic retention index of the surfactants (Table I-V). The average absolute errors of I_R estimation for polyoxyethylene glycols, polyoxyethylene glycol monoalkyl ethers and N-polyoxyethylene alkylamines are ca . 20 units, which corresponds to a relative error of $ca. 0.7-0.8\%$. This proves the validity of the applied calculation method and the accuracry of I_R determination. Thus, for the groups of surfactants considered the arithmetic retention index of the successive homologues can be estimated from the increments obtained, which may be useful for the identification of succesive peaks on the chromatograms.

In the case of polyoxyethylene glycol monoalkylphenyl ethers it is necessary to take into account the fact that the alkyl chain is branched, and hence that successive homologues elute earlier than equivalent isomers with the straight-chain octyl group. Thus, lower values of the arithmetic retention index are obtained for homologues with a more branched alkyl chain. The I_R increment for a branched octyl group is then lower than 800, and the increment per statistical carbon atom in a branched alkyl is lower than 100. A linear relation is observed between the arithmetic retention index and the connectivity index⁸ (Fig. 1). Using the least-squares method the following equation was obtained: $I_R = 197.64 + 208.25$, which is characterized by a high value for the determination coefficient ($R^2 = 0.9987$). The connectivity indices for *n*-octyl, 2-ethylhexyl and 1,1,3,3-tetramethylbutyl are 4.0607, 3.9545 and 3.4571, respectively. Assuming that the I_R increment is proportional to the increment of the connectivity index, the following values of I_R for 2-ethylhexyl and 1,1,3,3tetramethylbutyl were obtained: $800 \cdot 3.9545/4.0607 = 779$ and $800 \cdot 3.4571/4.0607$ $= 681$, respectively. These values correspond to ΔI_R values of 97.375 and 85.125 for

TABLE VI

Group		$R^{\star\star}$	
$-CH_2$ -, $-CH_3$	100	100	100
2-Ethylhexyl			779
1,1,3,3-Tetramethylbutyl			681
-0-	105	99	105
$-OH$		319	
$-OSi1$	380	325	380
$-QAC$	526		526
$-C6H4$ -			736
$=N-$		26	
$=$ NH		237	
$=$ NSil		293	

INCREMENTS OF THE ARITHMETIC RETENTION INDEX

 $A =$ polyoxyethylene glycols and polyoxyethylene glycol monoalkyl ethers.

** $B = N-polyoxyethylene alkylamines$.

 $\star \star \star$ C = polyoxyethylene glycol monoalkylphenyl ethers.

Fig. 1. The relation between the arithmetic retention index and the connectivity index; \times = polyoxyethylene glycol 2-ethylhexylphenyl ethers; \bigcirc = polyoxyethylene glycol 1,1,3,3-tetramethylbutylphenyl ethers.

each statistical carbon atom in 2-ethylhexyl and 1,1,3,3-tetramethylbutyl, respectively, compared with 100 in the n -octyl group. The increments for other characteristic groups present in polyoxyethylene glycol monoalkylphenyl ethers were similarly calculated. These values are given in Table VI, and the comparison of the estimated I_R values with those determined experimentally is shown in Table V. Te average absolute and relative errors are 35 and 0.9%, respectively, which is almost twice as large on the I_R scale than in the case of the previous groups of compounds considered.

CONCLUSIONS

The arithmetic retention index estimated from the increments determined for characeristic groups present in the surfactant molecules of the polyoxyethylene glycols and their derivatives can be used to identify peaks on the chromatograms. The average absolute and relative errors of the arithmetic retention index estimation are 20 and $0.7-0.8\%$, respectively, for polyoxyethylene glycols, polyoxyethylene glycol monoalkyl ethers and N-polyoxyethylene alkylamines, and 35 and 0.9%, respectively, for polyoxyethylene glycol monoalkylphenyl ethers.

REFERENCES

- 1 H. Szewczyk and J. Szymanowski, *Pollena-Thuzcze Srodki Piorace Kosmetyki, 26 (1982)* 10.
- 2 J. Szymanowski, H. Szewczyk and W. Jerzykiewicz, *Tenside Deterg.*, 18 (1981) 130.
- *3* J. Szymanowski, H. Szewczyk and J. Hetper, *Tenside Deterg., 18 (1981) 333.*
- *4* J. Szymanowski, H. Szewczyk and B. Atamaticzuk, Tenside *Detevg.,* 21 (1984) 139.
- 5 J. Szymanowski, H. Szewczyk, J. Hetper and J. Beger, J. *Chromatogr., 351 (1986) 183.*
- *6* A. G. Douglas, J. *Chromatogr. Sci., 7 (1969) 581.*
- *7* J. Stoer, *Einfiihrung in die Numerische Mathematik Z,* Springer, Berlin, Heidelberg, 1976.
- 8 M. Randi&, J. *Chromatogr., 161 (1978)* 1.